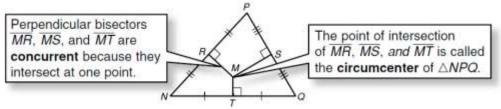
Properties of perpendicular bisectors



Any point on the perpendicular bisector is equidistant to the endpoints of the segments/sides that they bisect.

Example and practice 1

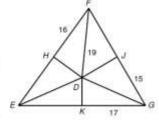
 \overline{HD} , \overline{JD} , and \overline{KD} are the perpendicular bisectors of $\triangle EFG$. Find each length.

1. DG

2. EK

3. FJ

4. DE

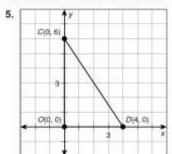


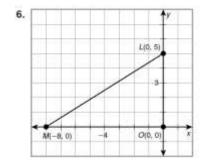
Circumcenter Theorem

Theorem	Example
Circumcenter Theorem The circumcenter of a triangle is equidistant from the vertices of the triangle.	Given: MR, MS, and MT are the perpendicular bisectors of △NPO. Conclusion: MN = MP = MQ

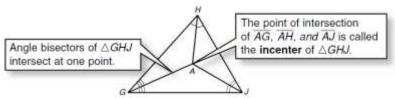
Example and practice 2

Find the circumcenter of each triangle.





Angle bisectors



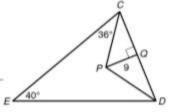
Any point on the angle bisectors is equidistant to the sides of the angles they bisect.

Theorem	Example
Incenter Theorem The incenter of a triangle is equidistant from the sides of the triangle.	Given: \overline{AG} , \overline{AH} , and \overline{AJ} are the angle bisectors of $\triangle GHJ$. Conclusion: $AB = AC = AD$

Example and practice 3

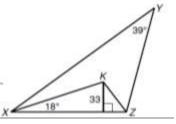
 \overline{PC} and \overline{PD} are angle bisectors of $\triangle CDE$. Find each measure.

- 7. the distance from P to CE
- 8. m∠PDE



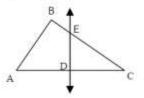
 \overline{KX} and \overline{KZ} are angle bisectors of $\triangle XYZ$. Find each measure.

- 9. the distance from K to \overline{YZ}
- 10. m∠KZY

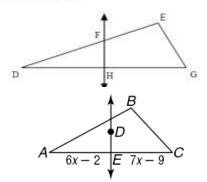


Example and practice 4

6) In $\triangle ABC$, \overrightarrow{DE} is perpendicular bisector of \overrightarrow{AC} with D on \overrightarrow{AC} . If AD = 2y + 4, CD = y + 12, and $m \angle EDC = 5(x - 12)^{\circ}$. Find the value of x and y. Find length of AD, DC, and, AC.



10) In $\triangle DEG \not= H$ is a perpendicular bisector of \overline{DG} with H on \overline{DG} . If DH = 2y + 3, GH = 7y - 42, and $m \angle FHG = (x^2 + 9)^\circ$, then find the value of x and y. What is the measure of DG?



11) \overrightarrow{DE} is the perpendicular bisector of \overrightarrow{AC} . Solve for x.

Example and practice 5

12) In $\triangle RTE$, \overline{TA} bisects $\angle RTE$, $m \angle RTA = (3y - 4)^\circ$, and $m \angle ETA = (4y - 17)^\circ$. Find the measure of $\angle RTE$.

14) \overrightarrow{DF} bisects $\angle CDE$. Solve for x.

